Dew Signal for .NET
|
Convert transfer function from zero-pole to numerator-denominator form.
Convert a rational polynomial defined with zeros Z and poles P and gain K in to its numerator Num and denominator Den form. The numerator will be scaled by K and both polynomials are assumed to have only real coefficents. (Poles and zeros can still be complex, if they have complex conjugated pairs.)
The following example computes the coefficients of the rational polynomial. The numerator has zeros at 3 and 4 and the denominator has zeros at 1 and 2. The polynomial in zero pole form can be written as:
And in transfer function form:
Notice that powers are falling from left to right.
Copyright (c) 1999-2024 by Dew Research. All rights reserved.
|
What do you think about this topic? Send feedback!
|